15 resultados para 060102 Bioinformatics

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Familial idiopathic basal ganglia calcification, also known as ""Fahr`s disease"" (FD), is a neuropsychiatric disorder with autosomal dominant pattern of inheritance and characterized by symmetric basal ganglia calcifications and, occasionally, other brain regions. Currently, there are three loci linked to this devastating disease. The first one (IBGC1) is located in 14q11.2-21.3 and the other two have been identified in 2q37 (IBGC2) and 8p21.1-q11.13 (IBGC3). Further studies identified a heterozygous variation (rs36060072) which consists in the change of the cytosine to guanine located at MGEA6/CTAGE5 gene, present in all of the affected large American family linked to IBGC1. This missense substitution, which induces changes of a proline to alanine at the 521 position (P521A), in a proline-rich and highly conserved protein domain was considered a rare variation, with a minor allele frequency (MAF) of 0.0058 at the US population. Considering that the population frequency of a given variation is an indirect indicative of potential pathogenicity, we screened 200 chromosomes in a random control set of Brazilian samples and in two nuclear families, comparing with our previous analysis in a US population. In addition, we accomplished analyses through bioinformatics programs to predict the pathogenicity of such variation. Our genetic screen found no P521A carriers. Polling these data together with the previous study in the USA, we have now a MAF of 0.0036, showing that this mutation is very rare. On the other hand, the bioinformatics analysis provided conflicting findings. There are currently various candidate genes and loci that could be involved with the underlying molecular basis of FD etiology, and other groups suggested the possible role played by genes in 2q37, related to calcium metabolism, and at chromosome 8 (NRG1 and SNTG1). Additional mutagenesis and in vivo studies are necessary to confirm the pathogenicity for variation in the P521A MGEA6.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alzheimer`s Disease (AD) is the most common type of dementia among the elderly, with devastating consequences for the patient, their relatives, and caregivers. More than 300 genetic polymorphisms have been involved with AD, demonstrating that this condition is polygenic and with a complex pattern of inheritance. This paper aims to report and compare the results of AD genetics studies in case-control and familial analysis performed in Brazil since our first publication, 10 years ago. They include the following genes/markers: Apolipoprotein E (APOE), 5-hidroxytryptamine transporter length polymorphic region (5-HTTLPR), brain-derived neurotrophin factor (BDNF), monoamine oxidase A (MAO-A), and two simple-sequence tandem repeat polymorphisms (DXS1047 and D10S1423). Previously unpublished data of the interleukin-1 alpha (IL-1 alpha) and interleukin-1 beta (IL-1 beta) genes are reported here briefly. Results from others Brazilian studies with AD patients are also reported at this short review. Four local families studied with various markers at the chromosome 21, 19, 14, and 1 are briefly reported for the first time. The importance of studying DNA samples from Brazil is highlighted because of the uniqueness of its population, which presents both intense ethnical miscegenation, mainly at the east coast, but also clusters with high inbreeding rates in rural areas at the countryside. We discuss the current stage of extending these studies using high-throughput methods of large-scale genotyping, such as single nucleotide polymorphism microarrays, associated with bioinformatics tools that allow the analysis of such extensive number of genetics variables, with different levels of penetrance. There is still a long way between the huge amount of data gathered so far and the actual application toward the full understanding of AD, but the final goal is to develop precise tools for diagnosis and prognosis, creating new strategies for better treatments based on genetic profile.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recurrent submicroscopic genomic copy number changes are the result of nonallelic homologous recombination (NAHR). Nonrecurrent aberrations, however, can result from different nonexclusive recombination-repair mechanisms. We previously described small microduplications at Xq28 containing MECP2 in four male patients with a severe neurological phenotype. Here, we report on the fine-mapping and breakpoint analysis of 16 unique microduplications. The size of the overlapping copy number changes varies between 0.3 and 2.3 Mb, and FISH analysis on three patients demonstrated a tandem orientation. Although eight of the 32 breakpoint regions coincide with low-copy repeats, none of the duplications are the result of NAHR. Bioinformatics analysis of the breakpoint regions demonstrated a 2.5-fold higher frequency of Alu interspersed repeats as compared with control regions, as well as a very high GC content (53%). Unexpectedly, we obtained the junction in only one patient by long-range PCR, which revealed nonhomologous end joining as the mechanism. Breakpoint analysis in two other patients by inverse PCR and subsequent array comparative genomic hybridization analysis demonstrated the presence of a second duplicated region more telomeric at Xq28, of which one copy was inserted in between the duplicated MECP2 regions. These data suggest a two-step mechanism in which part of Xq28 is first inserted near the MECP2 locus, followed by breakage-induced replication with strand invasion of the normal sister chromatid. Our results indicate that the mechanism by which copy number changes occur in regions with a complex genomic architecture can yield complex rearrangements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivation: DNA assembly programs classically perform an all-against-all comparison of reads to identify overlaps, followed by a multiple sequence alignment and generation of a consensus sequence. If the aim is to assemble a particular segment, instead of a whole genome or transcriptome, a target-specific assembly is a more sensible approach. GenSeed is a Perl program that implements a seed-driven recursive assembly consisting of cycles comprising a similarity search, read selection and assembly. The iterative process results in a progressive extension of the original seed sequence. GenSeed was tested and validated on many applications, including the reconstruction of nuclear genes or segments, full-length transcripts, and extrachromosomal genomes. The robustness of the method was confirmed through the use of a variety of DNA and protein seeds, including short sequences derived from SAGE and proteome projects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In most bacteria, the ferric uptake regulator (Fur) is a global regulator that controls iron homeostasis and other cellular processes, such as oxidative stress defense. In this work, we apply a combination of bioinformatics, in vitro and in vivo assays to identify the Caulobacter crescentus Fur regulon. A C. crescentus fur deletion mutant showed a slow growth phenotype, and was hypersensitive to H(2)O(2) and organic peroxide. Using a position weight matrix approach, several predicted Fur-binding sites were detected in the genome of C. crescentus, located in regulatory regions of genes not only involved in iron uptake and usage but also in other functions. Selected Fur-binding sites were validated using electrophoretic mobility shift assay and DNAse I footprinting analysis. Gene expression assays revealed that genes involved in iron uptake were repressed by iron-Fur and induced under conditions of iron limitation, whereas genes encoding iron-using proteins were activated by Fur under conditions of iron sufficiency. Furthermore, several genes that are regulated via small RNAs in other bacteria were found to be directly regulated by Fur in C. crescentus. In conclusion, Fur functions as an activator and as a repressor, integrating iron metabolism and oxidative stress response in C. crescentus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large amount of biological data has been produced in the last years. Important knowledge can be extracted from these data by the use of data analysis techniques. Clustering plays an important role in data analysis, by organizing similar objects from a dataset into meaningful groups. Several clustering algorithms have been proposed in the literature. However, each algorithm has its bias, being more adequate for particular datasets. This paper presents a mathematical formulation to support the creation of consistent clusters for biological data. Moreover. it shows a clustering algorithm to solve this formulation that uses GRASP (Greedy Randomized Adaptive Search Procedure). We compared the proposed algorithm with three known other algorithms. The proposed algorithm presented the best clustering results confirmed statistically. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Superoxide dismutases (SODs) are a crucial class of enzymes in the combat against intracellular free radical damage. They eliminate superoxide radicals by converting them into hydrogen peroxide and oxygen. In spite of their very different life cycles and infection strategies, the human parasites Plasmodium falciparum, Trypanosoma cruzi and Trypanosoma brucei are known to be sensitive to oxidative stress. Thus the parasite Fe-SODs have become attractive targets for novel drug development. Here we report the crystal structures of FeSODs from the trypanosomes T. brucei at 2.0 angstrom and T. cruzi at 1.9 angstrom resolution, and that from P. falciparum at a higher resolution (2.0 angstrom) to that previously reported. The homodimeric enzymes are compared to the related human MnSOD with particular attention to structural aspects which are relevant for drug design. Although the structures possess a very similar overall fold, differences between the enzymes at the entrance to the channel which leads to the active site could be identified. These lead to a slightly broader and more positively charged cavity in the parasite enzymes. Furthermore, a statistical coupling analysis (SCA) for the whole Fe/MnSOD family reveals different patterns of residue coupling for Mn and Fe SODs, as well as for the dimeric and tetrameric states. In both cases, the statistically coupled residues lie adjacent to the conserved core surrounding the metal center and may be expected to be responsible for its fine tuning, leading to metal ion specificity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of pharmacokinetic properties (PK) is of great importance in drug discovery and development. In the present work, PK/DB (a new freely available database for PK) was designed with the aim of creating robust databases for pharmacokinetic studies and in silico absorption, distribution, metabolism and excretion (ADME) prediction. Comprehensive, web-based and easy to access, PK/DB manages 1203 compounds which represent 2973 pharmacokinetic measurements, including five models for in silico ADME prediction (human intestinal absorption, human oral bioavailability, plasma protein binding, bloodbrain barrier and water solubility).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several gene regulatory network models containing concepts of directionality at the edges have been proposed. However, only a few reports have an interpretable definition of directionality. Here, differently from the standard causality concept defined by Pearl, we introduce the concept of contagion in order to infer directionality at the edges, i.e., asymmetries in gene expression dependences of regulatory networks. Moreover, we present a bootstrap algorithm in order to test the contagion concept. This technique was applied in simulated data and, also, in an actual large sample of biological data. Literature review has confirmed some genes identified by contagion as actually belonging to the TP53 pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a likelihood ratio test ( LRT) with Bartlett correction in order to identify Granger causality between sets of time series gene expression data. The performance of the proposed test is compared to a previously published bootstrapbased approach. LRT is shown to be significantly faster and statistically powerful even within non- Normal distributions. An R package named gGranger containing an implementation for both Granger causality identification tests is also provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skeletal alpha-tropomyosin (Tm) is a dimeric coiled-coil protein that forms linear assemblies under low ionic strength conditions in vitro through head-to-tail interactions. A previously published NMR structure of the Tin head-to-tail complex revealed that it is formed by the insertion of the N-terminal coiled-coil of one molecule into a cleft formed by the separation of the helices at the C-terminus of a second molecule. To evaluate the contribution of charged residues to complex stability, we employed single and double-mutant Tm fragments in which specific charged residues were changed to alanine in head-to-tail binding assays, and the effects of the mutations were analyzed by thermodynamic double-mutant cycles and protein-protein docking. The results show that residues K5, K7, and D280 are essential to the stability of the complex. Though D2, K6, D275, and H276 are exposed to the solvent and do not participate in intermolecular contacts in the NMR structure, they may contribute to head-to-tail complex stability by modulating the stability of the helices at the Tm termini.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe AMIN (Amidase N-terminal domain), a novel protein domain found specifically in bacterial periplasmic proteins. AMIN domains are widely distributed among peptidoglycan hydrolases and transporter protein families. Based on experimental data, contextual information and phyletic profiles, we suggest that AMIN domains mediate the targeting of periplasmic or extracellular proteins to specific regions of the bacterial envelope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cdc25 phosphatases involved in cell cycle checkpoints are now active targets for the development of anti-cancer therapies. Rational drug design would certainly benefit from detailed structural information for Cdc25s. However, only apo- or sulfate-bound crystal structures of the Cdc25 catalytic domain have been described so far. Together with previously available crystalographic data, results from molecular dynamics simulations, bioinformatic analysis, and computer-generated conformational ensembles shown here indicate that the last 30-40 residues in the C-terminus of Cdc25B are partially unfolded or disordered in solution. The effect of C-terminal flexibility upon binding of two potent small molecule inhibitors to Cdc25B is then analyzed by using three structural models with variable levels of flexibility, including an equilibrium distributed ensemble of Cdc25B backbone conformations. The three Cdc25B structural models are used in combination with flexible docking, clustering, and calculation of binding free energies by the linear interaction energy approximation to construct and validate Cdc25B-inhibitor complexes. Two binding sites are identified on top and beside the Cdc25B active site. The diversity of interaction modes found increases with receptor flexibility. Backbone flexibility allows the formation of transient cavities or compact hydrophobic units on the surface of the stable, folded protein core that are unexposed or unavailable for ligand binding in rigid and densely packed crystal structures. The present results may help to speculate on the mechanisms of small molecule complexation to partially unfolded or locally disordered proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tuberculosis (TB) is one of the most common infectious diseases known to man and responsible for millions of human deaths in the world. The increasing incidence of TB in developing countries, the proliferation of multidrug resistant strains, and the absence of resources for treatment have highlighted the need of developing new drugs against TB. The shikimate pathway leads to the biosynthesis of chorismate, a precursor of aromatic amino acids. This pathway is absent from mammals and shown to be essential for the survival of Mycobacterium tuberculosis, the causative agent of TB. Accordingly, enzymes of aromatic amino acid biosynthesis pathway represent promising targets for structure-based drug design. The first reaction in phenylalanine biosynthesis involves the conversion of chorismate to prephenate, catalyzed by chorismate mutase. The second reaction is catalyzed by prephenate dehydratase (PDT) and involves decarboxylation and dehydratation of prephenate to form phenylpyruvate, the precursor of phenylalanine. Here, we describe utilization of different techniques to infer the structure of M. tuberculosis PDT (MtbPDT) in solution. Small angle X-ray scattering and ultracentrifugation analysis showed that the protein oligomeric state is a tetramer and MtbPDT is a flat disk protein. Bioinformatics tools were used to infer the structure of MtbPDT A molecular model for MtbPDT is presented and molecular dynamics simulations indicate that MtbPDT i.s stable. Experimental and molecular modeling results were in agreement and provide evidence for a tetrameric state of MtbPDT in solution.